Skip to contents
scGraphVerse logo

🧬 scGraphVerse

✨ Comprehensive Gene Regulatory Network Analysis for Single-Cell Data ✨

License: GPL v3


🎯 Overview

scGraphVerse is a comprehensive R package for inferring, evaluating, and visualizing gene regulatory networks (GRNs) from single-cell RNA sequencing data. It provides an integrated framework with multiple inference algorithms, consensus construction, and rich visualizations optimized for single-cell expression analysis.

⚡ Key Features

Feature Description
🔬 Multiple Inference Methods GENIE3, GRNBoost2, ZILGM, JRF, PCzinb
🤝 Consensus Networks Voting, union, INet integration
📊 Comprehensive Evaluation ROC curves, AUC, F1-score, community analysis
🎨 Visualizations Interactive networks, performance plots
🔧 Flexible Integration SingleCellExperiment, Seurat, matrix objects

🚀 Installation

💻 Development Version

# Install development version
if (!require("devtools")) install.packages("devtools")
devtools::install_github("ngsFC/scGraphVerse")

🔬 Inference Algorithms

Method Description
GENIE3 🌳 Tree-based ensemble learning
GRNBoost2 🚀 Gradient boosting with Dask
ZILGM 🎯 Zero-inflated Gaussian graphical models
JRF 🌲 Joint Random Forests
PCzinb 🔗 Partial correlation with ZINB

🎪 Quick Start Demo

library(scGraphVerse)

# Load example data 📊
data("count_matrices")

# Infer networks 🧠
networks <- infer_networks(
  count_matrices_list = count_matrices,
  method = "GENIE3",
  nCores = 4
)

# Create consensus magic ✨
wadj <- generate_adjacency(networks)
consensus <- create_consensus(wadj, method = "vote")

# Visualize! 🎨
plotg(list(consensus))

📚 Documentation

Resource Link Description
🌐 Website ngsfc.github.io/scGraphVerse Main documentation hub
📖 Simulation Study Vignette Benchmarking tutorial
🔬 Case Study Vignette Real-world example
📋 Reference Manual Function documentation

📝 Citation

citation("scGraphVerse")  # 🎓 Academic credit

🌟 Please also cite the original methods:

Method Citation Journal
GENIE3 🌳 Huynh-Thu et al. (2010) PLOS ONE 5(9):e12776
GRNBoost2 🚀 Moerman et al. (2019) Bioinformatics 35(12):2159-61
ZILGM 🎯 Park et al. (2021) Statistical Analysis and Data Mining 37(18):3085-3092
JRF 🌲 Petralia et al. (2015) Journal of Proteome Research 31(12):i197-i205
PCzinb 🔗 Nguyen et al. (2023) Ann. Appl. Stat. 17(3):2555-73
INet-Tool 🔧 Policastro et al. (2025) Comput Stat 40, 1517–1539
Robin 🎯 Policastro et al. (2021) The R Journal 13(1):292-309

⚖️ License

scGraphVerse is licensed under GPL (≥ 2) 📜

🤝 Integrated Code Attribution

This package includes adapted functions from: - ZILGM (Park et al., 2021) - GPL-2 license - JRF (Petralia et al., 2015) - GPL (≥ 2) license - learn2count (Nguyen et al. 2023) - for the PCzinb implementation

All integrated code maintains proper attribution and copyright notices.

💰 Funding

This work is supported by the National Centre for HPC, Big Data and Quantum Computing 🇪🇺 - Funded by: European Union – Next Generation EU – CN00000013 - CUP: B93C22000620006


🧬 Happy Network Inference! 📊

Discover the hidden connections in your single-cell data