Skip to contents

Authors

  • Francesco Cecere. Author, maintainer.

Citation

Source: inst/CITATION

Cecere, F. (2024). scGraphVerse: A Gene Regulatory Network Analysis Package. R package version 0.99.0. URL: https://ngsFC.github.io/scGraphVerse

@Manual{,
  title = {scGraphVerse: A Gene Regulatory Network Analysis Package},
  author = {Francesco Cecere},
  year = {2024},
  note = {R package version 0.99.0},
  url = {https://ngsFC.github.io/scGraphVerse},
}

Park, B., Choi, H., & Park, C. (2021). Zero-inflated latent Gaussian mixture models for inference of gene regulatory networks. Bioinformatics, 37(18), 3085-3092. doi:10.1093/bioinformatics/btab293

@Article{,
  title = {Zero-inflated latent Gaussian mixture models for inference of gene regulatory networks},
  author = {Beomjin Park and Hosik Choi and Changyi Park},
  journal = {Bioinformatics},
  year = {2021},
  volume = {37},
  pages = {3085-3092},
  doi = {10.1093/bioinformatics/btab293},
}

Petralia, F., Wang, P., Yang, J., & Tu, Z. (2015). Integrative random forest for gene regulatory network inference. Bioinformatics, 31(12), i197-i205. doi:10.1093/bioinformatics/btv268

@Article{,
  title = {Integrative random forest for gene regulatory network inference},
  author = {Francesca Petralia and Pei Wang and Jiayu Yang and Zhidong Tu},
  journal = {Bioinformatics},
  year = {2015},
  volume = {31},
  pages = {i197-i205},
  doi = {10.1093/bioinformatics/btv268},
}

Policastro, V., Righelli, D., Carissimo, A., & Cutillo, L. (2021). A new consensus-based method for biomarker discovery from networks. BMC Bioinformatics, 22, 1-18. doi:10.1186/s12859-021-04441-8

@Article{,
  title = {A new consensus-based method for biomarker discovery from networks},
  author = {Valeria Policastro and Dario Righelli and Annamaria Carissimo and Luisa Cutillo},
  journal = {BMC Bioinformatics},
  year = {2021},
  volume = {22},
  pages = {1-18},
  doi = {10.1186/s12859-021-04441-8},
}