
Package index
-
infer_networks() - Infer Gene Regulatory Networks from Expression Matrices
-
create_consensus() - Create a Consensus Adjacency Matrix from Multiple Networks
-
compare_consensus() - Compare Consensus and Reference Graphs or STRINGdb Networks
-
PCzinb() - Structure learning for count data using PC algorithms
-
create_mae() - Create MultiAssayExperiment from Multiple Single-Cell Datasets
-
build_network_se() - Create a SummarizedExperiment for Network Storage
-
compute_topology_metrics() - Compute Network Topological Properties
-
compute_community_metrics() - Compute Community Assignment Similarity Metrics
-
community_similarity() - Compare Community Assignments and Topological Properties
-
classify_edges() - Classify Edges as TP, FP, or FN
-
edge_mining() - Edge Mining of Gene Interactions Using PubMed
-
community_path() - Community Detection and Pathway Enrichment Analysis
-
plotg() - Visualize Graphs from Adjacency Matrices
-
plot_network_comparison() - Visualize Network Comparison
-
plot_community_comparison() - Visualize Community and Topology Comparison
-
plotROC() - Plot ROC Curves for Inferred Networks
-
symmetrize() - Symmetrize Adjacency Matrices in a SummarizedExperiment
-
generate_adjacency() - Generate Adjacency Matrices from Gene Interaction Tables
-
cutoff_adjacency() - Threshold Adjacency Matrices Based on Shuffled Network Quantiles
-
stringdb_adjacency() - Build Adjacency Matrices for Physical Interactions from STRING (POST API)
-
selgene() - Select Top Expressed Genes from Single-Cell Data
-
pscores() - Compute Performance Scores for Predicted Adjacency Matrices
Setup and Configuration
Functions for initializing Python dependencies and downloading reference data
-
init_py() - Initialize Python Environment for GRNBoost2
-
download_Atlas() - Download and Load an RDS File from a URL
-
toy_counts - Toy MultiAssayExperiment for Network Inference
-
toy_adj_matrix - Toy adjacency matrix for examples
-
zinb_simdata() - Simulate Zero-Inflated Negative Binomial (ZINB) Count Matrices with Sequencing Depth
-
earlyj() - Modify Cell Names and Combine Datasets
-
nb.loglik() - Log-likelihood of the negative binomial model Given a vector of counts, this function computes the sum of the log-probabilities of the counts under a negative binomial (NB) model. The NB distribution is parametrized by two parameters: the mean value and the dispersion of the negative binomial distribution
-
nb.loglik.dispersion() - Log-likelihood of negative binomial model, for a fixed dispersion parameter
-
nb.loglik.regression() - log-likelihood of the NB regression model
-
nb.loglik.regression.gradient() - Gradient of the log-likelihood of the NB regression model
-
nb.OptimizeDispersion() - (NB) model. The NB distribution is parametrized by two parameters: the mean value and the dispersion of the negative binomial distribution
-
nb.regression.parseModel() - Parse ZINB regression model
-
zinb0.noT() - Structure learning with zero-inflated negative binomial model (mean only)
-
zinb1.noT() - Structure learning with zero-inflated negative binomial model
-
zinbOptimizeDispersion() - (ZINB) model. The ZINB distribution is parametrized by three parameters: the mean value and the dispersion of the negative binomial distribution, and the probability of the zero component.
-
zinb.regression.parseModel() - Parse ZINB regression model