
Compare Consensus and Reference Graphs or STRINGdb Networks
Source:R/compare_consensus.R
compare_consensus.RdConvenience wrapper that classifies edges and visualizes the comparison
between consensus and reference networks. For more control, use the
individual functions: classify_edges and
plot_network_comparison.
Arguments
- consensus_matrix
A SummarizedExperiment object representing the consensus network.
- reference_matrix
Optional. A SummarizedExperiment obj representing the reference network. If
NULL, STRINGdb is queried.- false_plot
Logical. If
TRUE, displays False Positives plot. Default isFALSE.
Details
If no reference_matrix is provided, STRINGdb is queried
to generate a high-confidence physical interaction network.
Note
Requires ggraph and ggplot2. If reference_matrix
is NULL, also requires STRINGdb. If false_plot = TRUE,
requires patchwork.
Examples
data(toy_counts)
data(toy_adj_matrix)
# Infer networks (toy_counts is already a MultiAssayExperiment)
networks <- infer_networks(
count_matrices_list = toy_counts,
method = "GENIE3",
nCores = 1
)
head(networks[[1]])
#> regulatoryGene targetGene weight
#> 1 HLA-B FTL 0.2017462
#> 2 FTL FTH1 0.1556962
#> 3 CD74 CXCR4 0.1551853
#> 4 HLA-B HLA-A 0.1536305
#> 5 HLA-A HLA-B 0.1497179
#> 6 FTH1 FTL 0.1475864
# Generate adjacency matrices
wadj_se <- generate_adjacency(networks)
swadj_se <- symmetrize(wadj_se, weight_function = "mean")
# Apply cutoff
binary_se <- cutoff_adjacency(
count_matrices = toy_counts,
weighted_adjm_list = swadj_se,
n = 1,
method = "GENIE3",
quantile_threshold = 0.95,
nCores = 1,
debug = TRUE
)
#> [Method: GENIE3] Matrix 1 → Cutoff = 0.06129
#> [Method: GENIE3] Matrix 2 → Cutoff = 0.06636
#> [Method: GENIE3] Matrix 3 → Cutoff = 0.06793
head(binary_se[[1]])
#> [1] "ACTG1" "ARPC2" "ARPC3" "BTF3" "CD3D" "CD3E"
consensus <- create_consensus(binary_se, method = "union")
# Wrap reference matrix in SummarizedExperiment
ref_se <- build_network_se(list(reference = toy_adj_matrix))
# Compare consensus to reference
compare_consensus(
consensus,
reference_matrix = ref_se,
false_plot = FALSE
)